Exploiting Causality for Efficient Monitoring in POMDPs

نویسندگان

  • Stefano V. Albrecht
  • Subramanian Ramamoorthy
چکیده

POMDPs are a useful model for decision making in systems with uncertain states. One of the core tasks in a POMDP is the monitoring task, in which the belief state (i.e. the probability distribution over system states) is updated based on incomplete and noisy observations. This can be a hard problem in complex real-world systems due to the often very large state space. In this article, we explore the idea of accelerating the monitoring task by automatically exploiting causality in the system. We consider a specific type of causal relation, called passivity, which pertains to how system variables cause changes in other variables. Specifically, a system variable is called passive if it changes its value only if it is directly acted upon, or if at least one of the variables that directly affect it (i.e. parent variables) change their values. This property can be readily determined from the conditional probability table of the system variable. We present a novel monitoring method, called Passivity-based Monitoring (PM), which maintains a factored belief state representation and exploits passivity to perform selective updates over the factored beliefs. PM produces exact belief states under certain assumptions and approximate belief states otherwise, where the approximation error is bounded by the degree of uncertainty in the process. We show empirically, in synthetic processes with varying sizes and degrees of passivity, that PM is faster than two standard monitoring methods while achieving competitive accuracy. Furthermore, we demonstrate how passivity occurs naturally in a real-world system such as a multi-robot warehouse, and how PM can exploit this to accelerate the monitoring task. The full article can be found at arXiv:1401.7941 (http://arxiv.org/abs/1401.7941).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Efficient planning for real world multi-agent domains

Partially Observable Markov Decision Problems (POMDPs) and Distributed Partially Observable Markov Decision Problems (Distributed POMDPs) are evolving as popular models for sequential decision making in agents/teams of agents, operating in partially observable environments. This has been primarily because of their ability to capture the different kinds of uncertainty present in real world envir...

متن کامل

Approximate Solutions for Factored Dec-POMDPs with Many Agents1

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. An empirical evaluation shows that the loss in solution quality due to these approximations is small an...

متن کامل

Networked Distributed POMDPs: A Synergy of Distributed Constraint Optimization and POMDPs

In many real-world multiagent applications such as distributed sensor nets, a network of agents is formed based on each agent’s limited interactions with a small number of neighbors. While distributed POMDPs capture the realworld uncertainty in multiagent domains, they fail to exploit such locality of interaction. Distributed constraint optimization (DCOP) captures the locality of interaction b...

متن کامل

Approximate Solutions for Factored Dec-POMDPs with Many Agents — Extended Abstract1

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. An empirical evaluation shows that the loss in solution quality due to these approximations is small an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1401.7941  شماره 

صفحات  -

تاریخ انتشار 2014